
This PDF is generated from authoritative online content, and
is provided for convenience only. This PDF cannot be used
for legal purposes. For authoritative understanding of what
is and is not supported, always use the online content. To
copy code samples, always use the online content.

Grafana configuration

Operations

2/3/2026

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Contents

• 1 Grafana in GKE
• 1.1 Google Cloud Monitoring in Grafana
• 1.2 Deploying Prometheus
• 1.3 Deploying Grafana
• 1.4 Grafana Plugins
• 1.5 Creating Grafana Instance
• 1.6 Connecting Prometheus to custom Grafana

• 2 Grafana dashboards
• 2.1 Importing custom dashboards
• 2.2 Creating Grafana dashboards

Operations 2



Learn about how to use Grafana to set up a monitoring solution for your services.

Related documentation:
•
•

RSS:

• For private edition

Grafana enables you to query, visualize, alert on, and understand your metrics.

Important
Although some services have packaged dashboard configuration within their Helm
charts, Genesys Multicloud CX private edition does not currently support monitoring
dashboards. The following information is provided purely as guidance based on
Genesys experimentation, and does not represent a supported configuration.

Grafana in GKE

Google Cloud Monitoring in Grafana
For details about cloud monitoring in Grafana, refer to https://grafana.com/docs/grafana/latest/
datasources/google-cloud-monitoring/.

Deploying Prometheus
Prerequisites

• Create a namespace for deploying Prometheus operator.
• Clone or download source from https://github.com/prometheus-operator/kube-prometheus.
• Make sure you remove the Grafana files. Grafana is deployed using the operator.

Steps to deploy Prometheus

1. Run the setup from the root of downloaded source. This deploys the Prometheus operator and CRDs.
kubectl create -f manifests/setup

Operations 3

https://all.docs.genesys.com/ReleaseNotes/Current/GenesysEngage-cloud/PrivateEdition?action=rnrss


2. For Prometheus to scrape the cluster (all namespaces), edit prometheus-clusterRole.yaml.
metadata:

labels:
app.kubernetes.io/component: prometheus
app.kubernetes.io/name: prometheus
app.kubernetes.io/part-of: kube-prometheus
app.kubernetes.io/version: 2.30.0

name: prometheus-k8s
rules:
- apiGroups:

- ""
resources:
- nodes/metrics
verbs:
- get

- nonResourceURLs:
- /metrics
verbs:
- get

- apiGroups:
- ""
resources:
- services
- pods
- endpoints
verbs:
- get
- list
- watch

3. After the setup is complete, execute the following command:
kubectl create -f manifests/

This deploys the following components.

• Prometheus
• Alertmanager
• Prometheus node-exporter
• Prometheus Adapter for Kubernetes Metrics APIs
• kube-state-metrics

4. Deploy required components
kubectl create -f manifests/

Deploying Grafana
Configuring Grafana

The community-powered Grafana is deployed in a new namespace (ex. monitoring) . Follow the
instructions to deploy Grafana in GKE.

Installing using Command Line Interface

Download/clone the Grafana operator rom https://github.com/integr8ly/grafana-operator and change
the working directory to grafana-operator-xx.

Operations 4



Steps to deploy Grafana operator manually

1. Create a new namespace or switch to a namespace (for example: monitoring) where Prometheus is
deployed.

$ kubectl create -f config/crd/bases

2. Create operator roles.
$ kubectl create -f deploy/roles

3. Modify ClusterRoleBinding (cluster_role_binding_grafana_operator.yaml). The namespace must be
updated with the current namespace where Grafana is deployed (for example: monitoring).

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: grafana-operator

roleRef:

name: grafana-operator

kind: ClusterRole

apiGroup: ""

subjects:

- kind: ServiceAccount

name: grafana-operator

namespace: monitoring

4. Scan for dashboards in other namespaces you also need the cluster roles.
$ kubectl create -f deploy/cluster_roles

To scan dashboards deployed in all namespaces, --scan-all should be added to operator container
as argument.

--scan-all: watch for dashboards in all namespaces. This requires the operator service account to
have cluster wide permissions to get, list, update and watch dashboards.

5. Deploy the operator to that namespace you can use deploy/operator.yaml.
containers:

- name: grafana-operator

image: quay.io/integreatly/grafana-operator:vX.X.X

args:

- '--scan-all'

6. Deploy the operator to that namespace. You can use deploy/operator.yaml

Operations 5



$ kubectl create -f deploy/operator.yaml -n

7. Check the status of the operator pod.

Grafana Plugins
If a data source or dashboard requires a plugin, it can be added in the dashboard itself or it can be
added as custom environment variable to the Grafana deployment.

Install plugins using Grafana environment variable

The operator allows you to pass custom environment variable to the Grafana deployment. This
means that you can set the GF_INSTALL_PLUGINS flag, as described.

1. Create and deploy the secret kubectl create -f .yaml -n .
apiVersion: v1

kind: Secret

metadata:

name:

type: Opaque

stringData:

GF_INSTALL_PLUGINS:

Add the section to Grafana CR.

deployment:

envFrom:

'''-''' secretRef:

name:

Creating Grafana Instance

1. Modify Grafana.yaml with the required values before creating Grafana instance. Update name and add
hostname if ingress is enabled.

apiVersion: integreatly.org/v1alpha1

kind: Grafana

metadata:

name: grafana-app

spec:

client:

preferService: true

Operations 6



ingress:

enabled: True

hostname: "grafana.gke1-uswest1.gcpe001.gencpe.com"

pathType: Prefix

path: "/"

config:

log:

mode: "console"

level: "error"

log.frontend:

enabled: true

auth:

disable_login_form: False

disable_signout_menu: True

auth.anonymous:

enabled: True

service:

name: "grafana-service"

labels:

app: "grafana"

type: "grafana-service"

dashboardLabelSelector:

- matchExpressions:

- { key: app, operator: In, values: [grafana] }

resources:

Optionally specify container resources

limits:

cpu: 200m

memory: 200Mi

requests:

cpu: 100m

Operations 7



2. Create a new Grafana instance in the namespace.
$ kubectl create -f deploy/examples/Grafana.yaml -n

3. Retrieve the Grafana UI login admin credentials.
$ echo "User: admin"

$ echo "Password: $(oc get secret --namespace -o
jsonpath="{.data.GF_SECURITY_ADMIN_PASSWORD}" | base64 --decode)"

Connecting Prometheus to custom Grafana
Deploy Grafana data source kubectl create -f -n . If Grafana instance is deleted and redeployed, you
must delete and redeploy Grafana data source as well.

apiVersion: integreatly.org/v1alpha1
kind: GrafanaDataSource
metadata:

name: grafana-datasource
namespace: monitoring

spec:
datasources:

- access: proxy
editable: true
isDefault: true
name: Prometheus
type: prometheus
url: 'http://prometheus-k8s.monitoring.svc:9090'

name: grafana-datasource.yaml

Grafana dashboards

Importing custom dashboards
To import a custom Grafana dashboard from a JSON file within Grafana, click Import and then click
Upload Json file as shown in the following screenshot:

Operations 8



Creating Grafana dashboards
To create Grafana dashboard, use the following template:

apiVersion: integreatly.org/v1alpha1
kind: GrafanaDashboard
metadata:

name:
namespace:
labels:

app: grafana --> label should match the dashboardLabelSelector defined in Grafana operator
spec:

customFolderName: "folder name"
json:

""
configMapRef:

name:
key:

---
apiVersion: v1
kind: ConfigMap
metadata:

name: voice-sips-dashboard-from-cm
data:

: |-

Important

Operations 9

/File:ImportCusDashB.png
/File:ImportCusDashB.png


Each product has a set of dashboards that come with the service for you to enable/
disable as per your choice.

You can deploy new customized dashboards. You can either deploy them as Grafana dashboard in the
namespace or it can be directly loaded on to the Grafana UI. Refer to https://github.com/integr8ly/
grafana-operator/tree/master/deploy/examples/dashboards for more details about different ways to
deploy a dashboard.

Operations 10


	Operations

